
Fast Marching Methods for the Continuous Traveling Salesman Problem

June Andrews
University of California, Berkeley, Department of Mathematics, Berkeley,

California 94720

and

J.A. Sethian
University of California, Berkeley, Department of Mathematics, Berkeley,

California 94720

Abstract

We consider a problem in which we are given a domain, a cost function
which depends on position at each point in the domain, and a subset of
points (“cities”) in the domain. The goal is to determine the cheapest
closed path that visits each city in the domain once. This can be thought
of as a version of the Traveling Salesman Problem, in which an underlying
known metric determines the cost of moving through each point of the
domain, but in which the actual shortest path between cities is unknown
at the outset. We describe algorithms for both a heuristic and an optimal
solution to this problem. The order of the heuristic algorithm is at worst
case M ∗N log N , where M is the number of cities, and N the size of the
computational mesh used to approximate the solutions to the shortest
paths problems. The average runtime of the heuristic algorithm is linear
in the number of cities and O(N log N) in the size N of the mesh.

Consider a problem in which we are given a speed function F (x) > 0 defined
in a domain x ∈ Rn. We are also given a collection of points (“cities”) Xi ∈ Rn.
The goal is to find the shortest roundtrip path that touches each city only once.
Here, the speed function F (x) represents the inverse of the cost associated with
passing through that point.

If the speed function F (x) = 1, then the metric is Euclidean, and the shortest
path between any pair of cities is the straight line connecting them. In this case,
all the edges (both their positions and weights) of the graph connecting the cities
are known, and the problem quickly reduces to the well-known (but nonetheless
NP hard) Traveling Salesman Problem (see, for example, [1]).

However, in the case of a non-constant speed function, both the actual path
and time required to travel between any pair of cities is unknown. A large
collection of physical problems fall into this category, including finding optimal
paths to navigate terrain with various speeds and obstacles while reaching a
given number of fixed stations.

1

This problem can be thought of as having two parts: first, to find the short-
est path between cities with a non-constant metric, and second, to find the
solution to the Traveling Salesman Problem with known edges and weights.
One algorithm to find the shortest path is given by the Fast Marching Method,
which is an algorithm to solve the Eikonal equation on a approximation mesh
which discretizes the continuous problem. At the same time, there are many
algorithms to find both optimal and near-optimal solutions to the Traveling
Salesman Problem. This suggests two distinct approaches to our problem:

1. Use the Fast Marching Method to find the shortest path between all pairs
of cities, and then let the time required for each path serve as input to the
Traveling Salesman Problem.

2. Couple the two algorithms, so that optimal paths between pairs of cities
are created “on the fly” as needed.

We will investigate both approaches.

1 Fast Marching Methods for Computing the

Shortest Paths

Here, we review some work on Fast Marching Methods to compute the shortest
path between points under a non-constant metric.

1.1 Dijkstra’s Method and Optimal Paths

Consider a discrete optimal trajectory problem on a network. Given a net-
work and a cost associated with each node, the global optimal trajectory is the
most efficient path from a starting point to some exit set in the domain. Di-
jkstra’s classic algorithm [2] computes the minimal cost of reaching any node
on a network in O(N logN) operations. Since the cost can depend on both
the particular node, and the particular link, Dijkstra’s method applies to both
isotropic and anisotropic control problems. The distinction is minor for discrete
problems, but significant for continuous problems. Dijkstra’s method is a “one-
pass” algorithm; each point on the network is updated a constant number of
times to produce the solution. This efficiency comes from a careful use of the
direction of information propagation and stems from the optimality principle.

We briefly summarize Dijsktra’s method, since the flow logic will be impor-
tant in explaining Fast Marching Methods. For simplicity, imagine a rectangular
grid of size h, where the cost Cij > 0 is given for passing through each grid point
xij. Given a starting point, the minimal total cost Uij of arriving at the node
xij can be written in terms of the minimal total cost of arriving at its neighbors:

Uij = min (Ui−1,j, Ui+1,j, Ui,j−1, Ui,j+1) + Cij. (1)

To find the minimal total cost, Dijkstra’s method divides mesh points into
three classes: Far (no information about the correct value of U is known),

2

Accepted (the correct value of U has been computed), and Considered (adjacent
to Accepted). The algorithm proceeds by moving the smallest Considered value
into the Accepted set, moving its Far neighbors into the Considered set, and
recomputing all Considered neighbors according to formula 1. This algorithm
has the computational complexity of O(N log N); the factor of logN reflects the
necessity of maintaining a sorted list of the Considered values Ui to determine
the next Accepted mesh point. Efficient implementation can be obtained using
heap-sort data structures.

1.2 Continuous Control: Methods for Solving the Eikonal

Equation

Consider now the problem of continuous optimal control; here, we assume that
the cost C is now a function C(x, y) defined throughout the domain, and the
goal is to find the optimal path from a starting position to an exit set. As
the mesh becomes finer and finer, Dijkstra’s method does not converge to the
continuous solution, since it produces the solution to the partial differential
equation max(|ux|, |uy|) = h ∗C, where h is the grid size (see [3]). As h goes to
zero, this does not converge to the desired solution of the continuous Eikonal
problem given by |u2

x + u2
y|

1/2 = C

1.2.1 Ordered Upwind Solvers for Continuous Isotropic Control

Nonetheless, algorithms which produce convergent approximations to the true
shortest path for non-constant metrics can be obtained using Dijstra’s method
as a building block. The first such algorithm was due to Tsitsiklis [4], who
obtains a control-theoretic discretization of the Eikonal equation, which then
leads to a causality relationship based on the optimality criterion. Tsitsiklis’ al-
gorithm evolved from studying isotropic min-time optimal trajectory problems,
and involves solving a minimization problem to update the solution. Tsitsiklis’
algorithm uses Dijkstra-like ideas to order and sort the update procedure, and
has the same O(N logN) operation count.

A finite difference approach, based again on Dijkstra-like ordering and updat-
ing, was developed by Sethian [5, 6] for solving the Eikonal equation. Sethian’s
Fast Marching Method evolved from studying isotropic front propagation prob-
lems, and involves an upwind finite difference formulation to update the solution.
Both Tsitskilis’ method and the Fast Marching Method start with a particular
(and different) coupled discretization and each shows that the resulting sys-
tem can be decoupled through a causality property. In the particular case of a
first order scheme on a square mesh, the resulting quadratic update equation
at each grid point is the same for both methods. We refer the reader to these
references for details on ordered upwind methods for Eikonal equations, as well
as [7] for a detailed discussion about the similarities and differences between
Tsitsiklis’s method and the Fast Marching Method. More recently, Sethian and
Vladimirsky have built a class of Ordered Upwind Methods, based on Dijkstra-
like methodology, for solving the more general class of optimal control problems

3

in which the speed/cost function depends on both position and direction, which
leads to a convex Hamilton-Jacobi equation. See [7] for details.

We now briefly discuss the finite difference difference approximations behind
Fast Marching Methods.

1.2.2 Fast Marching Method Update Procedure

We approximate the Eikonal equation

|∇U | = F (x, y)

where F (x) is the given speed function at point x in the domain. We replace
the gradient by an upwind approximant of the form:

[

max(D−x
ij u,−D+x

ij u, 0)2+

max(D−y
ij u,−D

+y
ij u, 0)2

]1/2

= fij , (2)

where we have used standard finite difference notation: this approximant was
suggested by Rouy and Tourin [8].

The Fast Marching Method is as follows. Suppose at some time the Eikonal
solution is known at a set of Accepted points. For every not-yet accepted grid
point with an Accepted neighbor, we compute a trial solution to the above
quadratic Eqn. 2, using the given values for u at accepted points, and val-
ues of ∞ at all other points. We now observe that the smallest of these trial
solutions must be correct, since it depends only on accepted values which are
themselves smaller. This “ causality” relationship can be exploited to efficiently
and systematically compute the solution as follows:

First, tag initial points as Accepted. Then, tag as Considered all points one
grid point away and compute values at those points by solving Eqn. 2. Finally,
tag as Far all other grid points. Then the loop is :

1. Begin Loop: Let Trial be the Considered point with smallest value of u.

2. Tag as Considered all neighbors of Trial that are not Accepted. If
the neighbor is in Far, remove it from that set and add it to the set
Considered.

3. Recompute the values of u at all Considered neighbors of Trial by solving
the piecewise quadratic equation according to Eqn. 2.

4. Add point Trial to Accepted; remove from Considered

5. Return to top until the Considered set is empty.

This is the Fast Marching Method given in [5]. Helmsen compares a similar
algorithm with a volume-of-fluid approach for photolithography simulations in
[9]; Malladi and Sethian apply the Fast Marching Method to image segmentation
in [10]. The key to an efficient implementation of the above technique lies in
a fast heap algorithm to locate the grid point in set of trial values with the
smallest value for u.

4

2 Algorithms for the Optimal Solution

We now present two options for finding the optimal solution to the continuous
traveling salesman problem: by optimal, we mean the shortest closed path that
passes through all cities. The first approach is to use the Fast Marching Method
to calculate the shortest path between each pair of cities to generate the complete
graph, and then use an optimal algorithm for the Traveling Salesman Problem.
The second approach is to embed the Fast Marching Method into the actual
construction of the optimal path. This latter approach can reduce runtime at
the cost of some additional storage: results on both approaches are discussed.

2.1 The Discrete Traveling Salesman Problem on a Com-

plete Graph: Optimal Solution

We begin with a brief description of the discrete Traveling Salesman Problem
in which positive weights (cost) on a discrete graph are known. The problem is
NP-complete: one straightforward method for constructing the optimal solution
is given by branching. Define a “partial path” as a continuous route along the
adjacent edges between consecutive cities in the path, with an associated total
cost for visiting all cities in the path. Define a “complete path” to be a closed
partial path that includes all cities. If a partial path P ends at a city C, we
can define a “branch” of P as the continuation of P beyond C to any neighbor
of C not included in the partial path P . We can systematically create all
possible paths that exclude revisitation by starting at any city and then looping
through branching until all complete paths have been found: the optimal one
is then selected by comparison. Thus, the algorithm is the following: At each
city, construct a partial path containing only that city. For each partial path,
construct all possible branches, which yields a new set of partial paths and
associated costs. Repeat until all partial paths have become complete paths,
and then select the one with the smallest associated cost. The total runtime is
of this algorithm is M !, where M is the number of cities.

2.2 Coupling the Fast Marching Method and Optimal TSP

Solution Algorithm

We now give two algorithms for computing optimal solutions to the continuous
Traveling Salesman Problem.

Algorithm A: Branching

The most straightforward technique to couple the Fast Marching Method
and the Optimal Algorithm for the TSP problem is to first calculate the graph
connecting each city with all other cities: this will assign a cost to each edge,
and the resulting graph can be given to the optimal algorithm for the TSP
problem. On a computational mesh of size N , the Fast Marching Method finds
the optimal path from a given point to each of N points in time O(N log N).

5

Starting M such calculations (one for each starting city) produces the complete
graph in O(MN log N), and hence the total compute time is O(M !+MN log N).

Algorithm B: Efficient Branching

The solution to the Traveling Salesman Problem on the given graph dom-
inates the runtime in the above algorithm: the labor of computing the graph
itself using the Fast Marching Method is negligible. However, computing the
shortest path between every possible pair of cities may be unnecessary, and
savings may be realized by embedding the path construction with the optimal
TSP solution. Here, we present an algorithm designed to build up partial paths,
ordered by cost, until one finally becomes a complete path. By construction, no
other complete path or partial path can be shorter.

The key idea is the introduction of a time step to control the branching of
the partial paths. This allows for an ordering of the partial paths, such that
each path that is created during that timestep has a cost greater than any
created during a previous time step, and a cost less than any created during the
next time step. We look for the first time step in which one or more paths is
completed: the cheapest will be optimal.

Consider a domain that contains all the cities and discretize into a mesh1 of
size N . Choose a time step dt. Set the clock time T = 0. We assume that there
are M cities.

• T = 0: At each of M cities, initialize a Fast Marching Method, where the
only accepted point is the city itself.

• Begin Loop:

– Advance each Fast Marching Method until all Considered points have
values greater than T .

– For each Fast Marching Method, build an edge from the base city to
each city reached during this time period and build a partial path
consisting of that edge.

– For each partial path P that ends at city i, suppose there is a partial
path Q connecting city i to a city j such that the total cost of con-
necting P and Q is less than T + dt. Then if there is no revisitation
or it is a complete path, create path P + Q.

– Check if any partial path is complete, if one or more is completed,
choose one with minimum cost and Exit

• Set T = T + dt; Return to Loop

Here, the condition for looping has changed from calculating all complete
paths to calculating one complete path. It is straightforward to check that the
obtained path is indeed optimal. One does not need to calculate all complete

1If cities do not fall on mesh points, use a non-uniform subdivision in each cell containing
a city so that the city is now located on mesh point: the modification of the Fast Marching
Method to non-uniform meshes is straightforward, see [3].

6

paths, nor even construct the complete graph of all possible links; in general,
however, it is typically computed. The amount of work saved using Algorithm
A vs. Algorithm B depends on the ratio of partial paths of associated cost less
than the optimal path compared to the partial paths of associated cost greater
than the optimal path: this ratio varies widely across problems.

3 Heuristic Algorithms

We now focus on producing algorithms for the continuous Traveling Salesman
Problem which produce near optimal solutions: more efficient algorithms can be
developed with a slight relaxation of the optimality requirement. First, we note
that our problem of a continuous Traveling Salesman Problem contains within
it a triangle inequality, namely that if T (A, B) is the time it takes to travel from
A to B for two cities A and B, then T (A, C) ≤ T (A, B) + T (B, C), since this
is satified by any set of geodesics under the assumed slowness field. Thus, we
may couple the Fast Marching Method to Christofides’ Algorithm [11], which is
a polynomial approximation algorithm in the case of an underlying triangle in-
equality. Christofides’ Algorithm has an upper bound of producing a path of cost
1.5*OPT, where OPT is the cost of the optimal path. Christofides’ use of the
minimum spanning tree lends itself to a union with the Fast Marching Method
through the use of Kruskal’s algorithm [12]. This union of algorithms allows
for an approximate solution of 1.5*OPT of the continuous Traveling Salesman
Problem.

3.1 Christofides’ Algorithm

Christofides’ Algorithm involves a series of simple polynomial time steps. The
first is the calculation of the minimum spanning tree. Then the calculation
of a perfect matching among the cities of the minimum spanning tree with an
odd number of edges in the minimum spanning tree. These two graphs, the
minimum spanning tree and the perfect matching, are then merged to create
one undirected graph. With this composite graph, an Eulerian path is found
through the graph. The desired approximation solution is then the removal of
revisitation from this Eulerian path, resulting in a solution at most 1.5*OPT.

In more detail, the steps of Christofides’ Algorithm are as follows:

3.1.1 The Minimum Spanning Tree

For the first step of creating the minimum spanning tree, Kruskal’s [12] can
be used. A spanning tree is a set of edges between cities such that any pair
of cities is connected through a subset of those edges. The cost of a spanning
tree is the summation of the cost of all edges in the spanning tree. The tree
that minimizes this cost is the minimum spanning tree. An efficient algorithm
for calculating the minimum spanning tree on any given connected graph is
Kruskal’s algorithm, which runs in time O(ElogE), where E is the number of

7

edges in the graph. Kruskal’s algorithm orders the edges in increasing cost and
then recursively either adds the edge to the tree or discards it. If the edge does
not redundantly connect a city to the tree, it is added. When the tree spans
all cities, this then is the minimum spanning tree and is returned by Kruskal’s
algorithm.

3.1.2 The Perfect Matching

Given the minimum spanning tree, Christofides then calculates a perfect match-
ing among the cities with an odd number of edges in the minimum spanning
tree. Here, a perfect matching is matching in which every city is adjacent to
exactly one edge of the matching. Christofides’ algorithm allows for this perfect
matching to have one city with no edge in the matching. These edges used in
the perfect matching must not also be used in the minimum spanning tree.

3.1.3 Composition and the Hamiltonian Path

With the composition of the minimum spanning tree and the perfect matching,
all that remains are graph traversal algorithms to calculate the Eulerian Path
and then the subsequent Hamiltonian Path. The composition graph is formed
simply by adding all edges of the perfect matching and the minimum spanning
tree. The Eulerian Path over the composite graph is simply a path that visits
each edge of the graph once. One algorithm to create this path is to randomly
progress from a city along a non-bridge edge to another city, and delete the
traversed edge from the graph: here, a bridge edge is an edge whose deletion
results in a disconnected set of edges. The Eulerian path is then the order in
which these edges are deleted from the graph.

The remaining step is then the transformation of the Eulerian path into
the approximate solution. The Eulerian path generates a list of the order
in which the cities are visited. This list generally contains multiple visits of
cities. Christofides’ method turns this list into a Hamiltonian path by progess-
ing through the list, visiting only cities that had not previously been visited.
Christofides’ algorithm simplifies the list by starting at the begining and as it
progresses along, removes cities from the list that have previously been visited
earlier in the list. This produces the desired Hamiltonian Path within 1.5*OPT ,
where OPT is the cost of the Optimal Path.

3.2 Coupling the Fast Marching Method to Christofides’

Algorithm

The Fast Marching Method can be coupled with Christofides’ Algorithm dur-
ing two stages: the calculation of the minimum spanning tree and the perfect
matching. The remaining steps of Christofides’ Algorithm run efficiently on the
previously generated information from the Fast Marching Method.

8

3.2.1 Coupling the Fast Marching Method and Kruskal’s Algorithm

The coupling we produced with the Fast Marching Method and Kruskal’s Al-
gorithm starts the Fast Marching Method from each city. Through the use of
a timestep, identical to the one used in Algorithm B the edges between cities
are ordered in ascending order. As an edge is created from the Fast Marching
Methods, it is put through the loop of Kruskal’s Algorithm. If the addition of
that finishes the minimum spanning tree, the various Fast Marching Methods
pause and the algorithm progresses to the perfect matching.

Combining the Fast Marching Method with Kruskal’s Algorithm is advan-
tageous, since the Fast Marching Method produces the edges of the complete
graph in ascending order. The largest amount of work done in Kruskal’s Algo-
rithm is the sorting of the graph’s edges into ascending order. This removal of
the sort cost cuts down the runtime of Kruskal within Christofides’ from ElogE

to E. Additionally, Kruskal’s Algorithm recurses through the sorted edges of
the graph: once the minimum spanning tree is calculated, the rest of the un-
touched sorted edges are ignored. This allows the Fast Marching Method to stop
calculating edges whenever the minimum spanning tree has been calculated, re-
moving the need for the Fast Marching Method to calculate the complete graph
in all but the worst case.

3.2.2 Coupling the Fast Marching Method and a Perfect Matching

Algorithm

There are two possible methods to couple the Fast Marching Method to pro-
ducing a perfect matching. The first is similar to coupling the Fast March-
ing Method to Kruskal’s algorithm. Resume the time-stepped Fast Marching
Method from each of the cities to be in the perfect matching. At each time step,
check if a perfect matching without any edges from the minimum spanning tree,
exists. The second is to resume the Fast Marching Method from the point where
it stopped during calculation of the minimum spanning tree and calculate the
complete graph for the cities to be matched.

4 Performance and Results

4.1 Timings

In Table 1, we show the results2 , of varying the number of cities on the three
different algorithms: (i) Branch, which is Algorithm A and produces the optimal
solution, (ii) Efficient Branch, which is Algorithm B and produces the optimal
solution, and (iii) Adaptive Christofides, which uses a heuristic approach to
produce a near optimal solution. In the numbers below, we computed average
times over 20 different runs of randomly placed cities: the calculations were
performed on a fixed mesh with 1225 nodes.

2All timings on a Dual 1.3GHz Itanium 2

9

In Table 2, we show the results of varying the number of cities on the
Branch, Efficient Branch, and Adaptive Christofides algorithms. Here, cities
are uniformly distributed along the boundaries of two concentric circles. The
calculation is performed on a fixed mesh with 12250 nodes. Table 3 shows

Cities Branch Efficient Branch Heuristic

2 0.007971 0.009923 0.009337
3 0.011875 0.015291 0.011777

4 0.015453 0.020333 0.013859
5 0.020008 0.025376 0.017015

6 0.025376 0.031069 0.021407
7 0.034323 0.041155 0.019097

8 0.101341 0.061651 0.026319
9 0.796741 0.205285 0.028727

10 8.681845 0.813008 0.033249
11 107.1124 3.351421 0.036698

12 1440.468268 18.69935 0.028239
13 inf 57.21878 0.032013

14 inf (116.0744*) 0.037609
15 inf inf 0.036795

Table 1: Time is in seconds on a 1225 node mesh with random placement of
cities: *average was taken of instances that finished, approximately half the
inputs failed to finish in under 30min.

the results of varying the number of mesh nodes in the Fast Marching Method
on the Branch, Efficient Branch, and Adaptive Christofides algorithms. Here,
cities are placed along the boundaries of two concentric circles We examine the
performance dependence of the Fast Marching part of the algorithm: the tim-
ings show that the results are essentially linear in the number of mesh points.

4.2 Results

Here, we show a sequence of results, comparing obtained results for both the
optimal path algorithm and the heuristic near-optimal Christofides’ algorithm.
In each of the below, we show a gray-scale background, in which the darker
the region, the slower the speed function background metric. The left column
shows results from the optimal Fast Marching-Branching algorithm: the right
column shows results from the heuristic Fast Marching-Christofides’ algorithm.
The top row is for a configuration of cities in two concentric circles; the bottom
row shows cities in a rectangular lattice.

Figure 1 shows results for a uniform speed function. As expected, the short-
est path between each pair of cities is a straight line. Figure 2 shows a ra-
dially symmetric speed function, with monotonically decreasing speed as one

10

Cities Branch Efficient Branch Heuristic

2 0.008784 1.31272 1.287344
3 0.013664 2.063264 1.508896

4 0.016592 2.782576 1.765584
5 0.0244 3.488224 2.01056

6 0.027328 4.276832 2.261392
7 0.03904 5.21184 3.432592

8 0.103456 6.169296 4.628192
9 0.794464 7.263392 5.808176

10 8.576112 9.383264 6.969616
11 105.938942 20.973264 7.441024

12 1429.103149 90.990528 7.289744

Table 2: Time is in seconds on a 122500 node mesh with placement of cities
around 2 concentric circles.

approaches the center at the origin. Figure 3 shows a checkerboard speed func-
tion, and Figure 4 shows a double sinusoidal speed function. Over all results,
the average computed cost for modified Christofides’ is 1.45 times that of the
optimal algorithm.

Acknowledgements

This work was partially supported by the Director, Office of Sci-

ence, Computational and Technology Research, U.S. Department of

Energy under Contract No. DE-AC02-05CH11231, and the Division

of Mathematical Sciences, National Science Foundation

References

[1] Papadimitriou, C.H., and Vempala S., On the approximability of the trav-
eling salesman problem (extended abstract), Proc. STOC’2000, 126-133.

[2] Dijkstra, E.W., A Note on Two Problems in Connection with Graphs,
Numerische Mathematic, 1:269–271, 1959.

[3] Sethian, J.A., Level Set Methods and Fast Marching Methods, Cambridge
University Press, 2nd Edition, 1999.

[4] Tsitsiklis, J.N., Efficient Algorithms for Globally Optimal Trajectories,
IEEE Tran. Automatic Control, 40, pp. 1528-1538, 1995.

[5] Sethian, J.A., A Fast Marching Level Set Method for Monotonically Ad-
vancing Fronts, Proc. Nat. Acad. Sci., 93, 4, pp. 1591-1595, February
1996.

[6] Sethian, J.A., Fast Marching Methods, SIAM Review, Vol. 41, No. 2, pp.
199-235, 1999.

11

Grid Nodes Efficient Branch Heuristic

900 0.826282 0.017373
18496 1.501869 0.555539

36100 3.082989 1.298796
53824 3.882918 1.81061

71289 5.018787 2.803853
88804 6.56809 3.36258

106929 7.766276 4.116443
124609 9.007699 5.213141

142129 10.08169 6.485109
160000 11.66066 6.793611

Table 3: Time is in seconds for ten cities placed randomly: nodes are increased
linearly at a rate of 17600.

[7] Sethian, J.A., and Vladimirsky, A., Ordered Upwind Methods for Static
Hamilton-Jacobi Equations: Theory and Algorithms, SIAM J. Numer.
Anal., 41, 1, pp. 325-363, 2003

[8] Rouy, E. & Tourin, A., A Viscosity Solutions Approach to Shape-From-
Shading, SIAM J. Num. Anal., 29, 3, pp. 867-884, 1992.

[9] Helmsen, J., Puckett, E.G., Colella, P., and Dorr, M., Two new meth-
ods for simulating photolithography development, SPIE 1996 International
Symposium on Microlithography, SPIE, v. 2726, June, 1996.

[10] Malladi, R., and Sethian, J.A., An O(N log N) Algorithm for Shape Mod-
eling, Proc. Nat. Acad. Sci., Vol. 93, pp. 9389-9392, 1996.

[11] Christofides, N., Worst-case analysis of a new heuristic for the travelling
salesman problem, Report 388, Graduate School of Industrial Administra-
tion, Carnegie Mellon University, 1976

[12] Kruskal J.B., On the shortest spanning subtree and the traveling salesman
problem, Proceedings of the American Mathematical Society, 7 (1956), pp.
48-50.

12

Figure 1: Constant Speed Function. Left: Coupled Fast Marching-Optimal
Algorithm (Cost: Top=54, Bottom=39). Right: Coupled Fast Marching
Christofides’ (Cost: Top=58, Bottom=41

13

Figure 2: Speed Function proportional to radius. Left: Coupled Fast Marching-
Optimal Algorithm (Cost: Top=129, Bottom=146). Right: Coupled Fast
Marching Christofides’ (Cost: Top=163, Bottom=182)

14

Figure 3: Checkerboard speed function. Left: Coupled Fast Marching-Optimal
Algorithm (Cost: Top=210, Bottom=152). Right: Coupled Fast Marching
Christofides’ (Cost: Top=246, Bottom=182)

Figure 4: Double sinusoidal speed function. Left: Coupled Fast Marching-
Optimal Algorithm (Cost: Top=106, Bottom=95). Right: Coupled Fast March-
ing Christofides’ (Cost: Top=123, Bottom=115)

15

